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The solution of the problem of the harmonic oscillations of a piecewise-inhomogeneous domain, consisting of three joined 
rectangles with different elastic properties, is constructed within the framework of a modified superposition method. The 
discontinuities in the wave field are investigated in the neighbourhood of a singular point of the boundary at the joint of the 
rectangles. © 2005 Elsevier Ltd. All rights reserved. 

A knowledge of the nature of the behaviour of the components of the stress-strain state close to singular 
points and lines of the surface of the body being considered enables one to approximate the solution 
of problems in the theory of elasticity in an optimal manner and to construct an efficient numerical 
algorithm in order to find it. This undertaking is even more urgent in problems of the vibration loading 
of structural components when the stressed state can undergo qualitative changes depending on the 
frequency of the external load. The discontinuities in the distribution of the static stresses in the 
neighbourhood of the corner point of the line of separation of the domains of the cross-section of a 
body, composed of two different prismatic bodies which have been joined along a lateral surface, have 
been considered earlier in [1-3]. For example, the plane, elastostatic problem of two unlike wedges 
with arbitrary aperture angles was considered in [1]; the solution was constructed in terms of Mellin 
transforms which, after satisfying the matching conditions, enables one to investigate the dependence 
of the order of the singularity of the stress field at the vertex of the wedges on the aperture angles and 
combinations of the constants of elasticity. A method was described in [4] which enables one to establish 
the nature of the above-mentioned discontinuities without solving the boundary-value problem directly. 
Dynamic aspects of the problem have been considered in [5-7] and, in particular, the concept of a 
"boundary" resonance, which is a generalization of the thoroughly investigated edge resonance [8], was 
introduced. 

The problem of determining the qualitative and quantitative nature of the discontinuity in the wave 
field, which arises in the neighbourhood of the corner point of the joint of three unlike regions of 
rectangular form, is presented below. Such problems arise when calculating the strength parameters 
of welded or soldered butt joints with angular joints [9]. The general solution of the problem of the 
harmonic oscillations of an inhomogeneous rectangle with an internal aperture was constructed earlier 
in [10] using a modification of the superposition method, which uses the asymptotic behaviour of the 
wave characteristics at singular points of the boundary. 

tPrikl. Mat. Mekh. Vol. 69, No. 2, pp. 279-289, 2005. 
0021-8928/S--see front matter. © 2005 Elsevier Ltd. All rights reserved. 
doi: 10.1016/j.jappmathmech.2005.03.011 
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1. F O R M U L A T I O N  OF  T H E  P R O B L E M  

Suppose a section of a piecewise-inhomogeneous elastic prism, which is infinite in the direction of the 
ct3 axis, occupies a region ~10~2 in the system of coordinates D = ~(1) u ~(2) w ~(3) where the regions 
~(m) are joined to one another and are defined by the inequalities 

~(1) = '[((/'1' Or'2) ; lal[ ~ C, ~2 E [ - b , - d ]  U [d, b]}  

~(2) ---- i(o[1, ~2) : a l  E [ - a , - C ]  U [c,a], 1(~21 <_d} 

~(3) = { ( a l  ' (X2) : al  E [ -a , -c]  u [c, a], ~2 E [ -b , -d]  u [d, b]} 

The material of the regions ~(m) is assumed to be isotropic and is defined by their shear modulus 
g(m), Poisson's ratio v (m) and the density p(m). Henceforth, a superscript will mean that a mechanical 
characteristic or an elastic modulus belongs to the region ~(m) (m = 1, 2, 3), and Greek indices take 
the values of 1 and 2. 

Suppose a vibrating load of varying intensity q, which varies harmonically with time with a frequency 
co, is specified on the external sides of the section oq = _+a, a2 = +_b and that the internal boundary 
of the section is free. 

For convenience, we will introduce the local dimensionless coordinates 

= ( ~  - c ) /a ,  5' = (0~2 - d ) /a  

in the region of the section and the dimensionless geometric parameters 

"q = b/a,  6 = c/a,  y = d/a ,  8 2 = 1 - 6 ,  ~'2 = rl-~/ 

By taking account of the symmetry of the region D, the wave field of the part of the region which is 
located in the first quadrant can be considered. This part of the region is shown in Fig. 1 in dimensionless 
coordinates. 

The dimensionless amplitude components of the stress tensor ~("~), referred to kt (m), are related to the 
dimensionless displacements U1 m) referred to a, by Hooke's law for an isotropic body and depend on 

the dimensionless frequency parameter f~(m) = c0a/~ g(m)/p(m). 
The boundary conditions of the problem include power conditions for the load on the external 

boundary of the section and the condition for fast coupling of the regions G (m). They can be written in 
dimensionless form as follows: 

inthe domain G 0 ) =  {Ixl <- 5; 0 ___ ~ <-Y2} 

(3), o u 3)(o, 
l~ll3, .Y) = r31(~l13k ,Y),  = 

_(I) .  q(1), _(1). _(l) .  (I). 
= = = (~22 (x~ = 022 IX, '~2) O12 I,X, ~/2) O'12 IX, 0)  0)  0 
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in the domain G (2) = {0 < 2 < 82; [y[ < ~t} 

6~22)(2, y) = r326;3z'(2, 0), u~z'(2, ~t) = U~3)(2, O) 
(1.1) (2)[~ q(2), (2) 8 6(2)[0, _(2),r, 6ll  t 2, Y) = 612 ( 2, Y) = 12 t Y) = Olt tU, y) 

in the domain G (3) = {0 < 2 < 82; 0 _< ) _< ~/2} 

0(3)t8 , _(3),~ _(3),^ 6(3)t~, . , ll ~, 2 Y) -- q(3), 012 tO2, ~) = O, 022 iX, Y2) = q(3), 12 t "](2) = 0 

rij = ~(i)/~l(j) ' q(m) = q/~t(m) 

2. C O N S T R U C T I O N  OF T H E  G E N E R A L  S O L U T I O N  
m) We will construct the general solution U~ , which satisfies the system of equations of motion within 

(m) • ~ • the regions G , using the superpositlon method [8] in the form of the sum of two partial solutions of 
this system, each of which describes the oscillations of infinite strips which form the domain G (m) at 
their intersection. The evenness or oddness of these partial solutions is determined by the form of the 
boundary conditions. At the same time, it is necessary to take account of the fact that the functions 
g~ 1) (X, 33) and UI 3) (2, 33) .with respect to the. coordinate 33 and the functions UI2) (2, y) and U. t3) (2, 33) 
with respect to the coordinate 2 are functions of a common form. Hence, the general solution of the 
problem in the regions G (m) is written in the form 

U(11) = H~l)sh(t(1)x)c°sO(1)(3 ;-  '/2) + L r ~ l ) s i n z ( 1 ) (  x -  8) 

U~ ') = HO) ch(t(1) x)sinO(1)(Y- Y2) + 0~l )c°8z  (1)(X- 8)  

U~ 2) = Lr~2)eosO(2l(Y-T) + Rl2)ch(l(2)y)sinz(2)( ~ -  82) 

U~ 2~ = ~r~E)sin0(2)(y-y) + R(22)sh(l(2)y)cosz(2)(2- 82) 

U~ 3) = (J~3)cosO(1)(Y - 'Y2) + (]~3)sinz(2)( 2 -  82) 

U~ 3) = (J~3~sinO(l~(5'- Yz) + U~3lc°sz(Zl( 2 -  8z) 

(2.1) 

where 

0~ n)= R~n)sh(l(n)y)+ s~n)ch(l (n), y), /'/= 1, 3; ~]~P) = n~P)sh(t(P)2)+ a~P)ch(t(P),2), p = 2,3 

The set of constants, g ~ m ) ,  Qlm), Rlm) and .S.lm) in formulae (9_:1) ensures, the necessary degree of 
arbitrariness for satisfymg the boundary condmons and the matching conditions (1.1) in the composite 
domain being considered. It is advisable to choose sequences of numbers 0(k ~) and Z, (.~) as the values of 

(1~) ([~) • • J 0 and Z such that the systems of corresponding functions are complete and orthogonal in the 
corresponding intervals [8, 10]. From this requirement, the values 

^(2) kxly, " (1) . (2) 0~ 1) kx/72, Ok Lj = jx]8,  = jx/82; k = 1, 2, • j = 1, 2, = = L j  . . . . . . .  

follow as being possible. 
Substituting expression (2.1) into the systems of equations of motion, we obtain systems of linear 

homogeneous equations in the coefficients H(1 m) and H~ n), . . . ,  S~ m) and S(2 m) for each value of k and j. 
From the condition for a non-trivial solution of these systems to exist, we find the values of the parameters 
t (m) and l ('0. 

2 2 (m) 2 o,(m) z ¢-~(m) 2 i(m) 2 ,~(m) ¢-~(m) 
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~'~I m)2 = f'l(m):lM(m) 
. . . . .  1 1 '  N~7 ) = 2(1-v(~))/(1-2v(m)), f~(~) = a(m) 

(1) 0(k3), .(2) (3) 

and the relation between the above-mentioned coefficients, which completely defines the general solution 
of the problem in all of the regions G (m) and enables one to satisfy the matching conditions and the 
power boundary conditions. 

3. THE SOLUTION OF SUBSIDIARY PROBLEMS 

In accordance with the algorithm for the modified superposition method, which was first proposed for 
the case of homogeneous, finite regions [11] and for a domain extended into non-homogeneous domains 
[7, 10], we replace the initial boundary conditions with subsidiary conditions. This enables us to obtain 
an analytical solution of the subsidiary problem. The solution of the initial boundary-value problem 
will be expressed in terms of additional functions, which specify the boundary conditions which have 
been introduced. The rules for the change in these functions in the neighbourhood of the singular points 
of the domain enable us to investigate the singularities in the concentration of the stresses and to separate 
out the slowly converging parts in the series for all of the wave characteristics. In the case being 
considered the boundary conditions of the subsidiary problem is complicated considerably in view of 
the two internal lines of separation of the domains G (m) and take the following form 

G (1) = {Ixl -<15; 0-<9-<3'2}: 

UI1)( 8, Y) = f l (Y) ,  13~)(8, Y) = (DI(Y) 

= 13(1)[X,  " " u ~ l ) ( x ,  O)  "- f 3 ( x ) ,  1312 ` , U~I)( X, ~t2) f2 (x ) ,  12 ~, ]'2) -- O, (1)(x O) -- 0 

G (2) = {0-<2>82; lYI-<7}: 

_(2),~ U~2)( 0, Y) f s (Y) ,  13(1~)( 0, Y) 0 U~2)(82, Y) = fg(Y), 012  ( 0 2 '  Y) = O, = = (3.1) 

U~2)(2, ]t) f6 (2 ) ,  (21. ^ = o12 (x, 7) = q02(2) 

G (3) = { 0 _ < 2 _ < 8 2 ; 0 < ~ . < y 2 } :  

U~3)(82, Y) = f7(Y),  _(3),~ (3)r0, = o12(o2 ,9)  = 0, U]3)(0, Y) = fl(Y), 1312~ -Y) rl3(Pl(Y) 

(3)r~ = U~3)(2, O) = f6 (~) ,  012 t , O) r23~02(~) U~3)( ~, 72) = f s ( x ) ,  012 ~ , 72) O, (3)[~ = 

The unknown subsidiary functions are denoted byfl(~), q%()), . . . ,  f8(Y). 
Note that the choice of the boundary conditions of the subsidiary problem in the form (3.1) enables 

us automatically to satisfy the parts of the boundary conditions of the initial boundary-value problem 
which touch upon the normal displacements and shear stresses in the external and internal boundaries 
of the domain. We expand the subsidiary functions in Fourier series in the corresponding intervals and, 
using the general solution of the problem, we set up conditions (3.1). The resulting sets of linear systems 
admit of an analytical solution and enable us to express, in explicit form, the characteristics of the wave 
field in the whole of the composite region of the section in terms of the Fourier coefficients fl0, flk, 
f20, f2j, qhk, ... of the subsidiary functions which have been introduced. For example, the expressions 
for the displacements in the region G (~1 have the form (summation with respect to k and j is carried 
out from one to infinity everywhere) 
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U,'(I) = ~'~2(1)21 ~kf r'q V(I)c°s°(l)"^L k65 k tY--h,- ' + ,~ W~:)sinx~l)( x _  - 8>I + flo ~ ]  sin flll)x 

u : l )=  ~ I ) 2 1 Z  V~:)sinO~l'(Y- T2)+ Z w~l 'c°s~ l , (x-  8, }+ 
~'~2 L k k 

sin ali)Y sin aI')(Y - T2) 
+f2o . ~(1) f3o (1)~, 

s m ~ l  T2 singer t2 

where 

V(1) (1) 2 (i) 0~ 1)) + t) k ~lk/x, ix, 8, = 65, 34 krs = 2(Ok ) f lkAr  (X, 8, ^(1) --(1). 0~1)), r s  

w~l) (1) 2 (1) ^ . (l)x_f3jAll)(~_~2, t = 2()~j ) [ f E j A t  (y, "~2, ~,j ) T2, ~1))], y = 3, 6 

(m)2 (m) Zj elm) (m) 
a2) c(m) a3j r ( m ) -  a2---~J r'(m) A(4m)(u, 1), z j )  = - 

a~")(u, v, z )  = ~--:2-~_(~)"~J z: "-2s, ~ ~ zs 2: 
L Z j a l j  a l j  

(m)2 
~,(m) c(m) A(m)(u, 1), ¢(m) a3 j  e(m) A~m>(u, O, Z j )  = " 2 j  -- ° l j  ' Z j )  = *"2j -- - ~ ' ~ " l j  

LZj  

(m) (m) 
.q(m.) s h a y j  u (7(m) cha~,j g (m)2 2 r.,(m)2 _(m)2 (m)2 2 
~TJ = (m) ' v y j  = (m) ' a~j  = Zj -- x~.~ , a3 j  = a2 j  + Zj 

sharj v sharj v 

The form of writing the solution of the subsidiary problems which has been described assumes that 
(m) (m) all those frequency values for which the expressions sh(/~/ T), sh(/~ 8), ... vanish are eliminated from 

the treatment. It has been noted in [8, 11] that these frequency values are not associated with any physical 
discontinuities in the behaviour of an elastic body and they only require a certain change in the form 
of writing the general solution. 

4. ASYMPTOTIC ANALYSIS OF THE SOLVING SYSTEM OF 
INTEGRAL EQUATIONS 

After replacing the initial boundary-value problem by the subsidiary problem, defined by boundary 
conditions (31), part of the boundary conditions (1.1) remained unsatisfied. They can be considered 
as a system of integral equations in the unknown subsidiary functions fl(P), q01C9), ... , f8(2). These 
functions can have singularities at the edge points of their domains of definition. By taking account of 
these singularities we can separate out and sum the slowly converging parts in the series for the wave 
characteristics and to successfully select the coordinate functions in asymptotic methods for solving a 
system of integral equations. The nature of the singularities at pointsA, B and C (Fig. 1) has previously 
been investigated in [7, 10] and, in this paper, we shall therefore formulate the problem of determining 
the singularity in the wave field at the internal point D(8, Y) of the joint of the three domains. For this 
purpose, we shall assume that the functions (3.1), which are asymptotically significant in the 
neighbourhood of this point, have singularities of the following form 

f ; ( { )  = F~/{ ¢ - '  qoj({) = (I}~?~ tz-l" 

' (  f3 {) -- F~3(8- {)a-1 when { --> 8; 

i = 1,6; j = 1,2 when {---~0 

' (  i s  ~) = F~5(T- ~)a- 1 when { ~ T 

In these formulae, (x is a parameter which determines the singularities of the above-mentioned functions 
at the point D, and F/D, ~ (i = 1, 3, 5, 6; j = 1, 2) are arbitrary constants. 

Determining the asymptotic form of the Fourier coefficients of the functions being considered, we 
write the boundary conditions, which have not been used in the subsidiary problems and the conditions 
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for matching the regions G (m) in the neighbourhood of point D, for the limiting values of the arguments, 
that is, 

ol l  tu,~) when ~ -o  0; (2)'2 (3)iX 0 = (Y22 k , 7 )  = 022 ~, , ) when 2 --) 0 

U(1)'~)2 t ,Y)^" = U(3)'0,2 t y)̂ " when ~ 0 ;  U(12)( 2, T) = U~3)(2, 0) when 2 --~ 0 (4.1) 

y(2),,, _(1). 
ll tu, y) = 0 when y --) T; 022 tx, 0) = 0 when x ~ 

Redefining the constants and taking account of the fact that there are no discontinuities in the external 
load at this point, we reduce conditions (4.1) to a system of homogeneous equations, which define the 
nature of the singularities in the wave-field characteristics at the point D, 

(3) (1) (3) 
- m l 3 s a ~  1 + r21(1 + ~ d ] 3 1 ) ) ~ 2 -  2(d(111)+ r31dl!  )saF l - 2 d l l  o~F 3 - 2 r 3 1 d 1 1  o~F 6 = 0 

.(3)~q b (3) 2d]])~F5 + (2) (3) r12(1 + ~all  , 1 - m23s~qb2-  2 r32d l l  ~ F 1  - 2(dla - r32d11 )s~F6 = 0 

(3) + 2m13scLF 1 + 2(1 -  otd]ll))F3 + 2 (1 -  ad~]))F6 0 (4.2) _ (A (1) + rl3A(3))s~dPl + rz3dl l  o~(I) 2 -__ 

"(3)~F + 2(1 - o~d]]))F5 + 2mz3s~F 6 0 "(3)rY~ (A(Z)+rz3A(3))saO2+2( 1 -°~aal J 1 = F13all  ~ 1 - -  

where 

1 A(m) = 2_d],~), mij = 2 - 3 ( v ( i l + v ( J l ) + 4 v ( i ) v  (j) 
d ] l ) =  2 ( 1 -  v(m)) ' 2 ( 1 -  v ( i ) ) (1 -v  (j)) 

D D 
• ~ =-2qblsF(~)s  a, F t = 2F kF(oOsa, k = 1 ,3 ,5 ,6 ;  Sc~ = s i n ?  

and F (a) is the gamma-function. 
In system (4.2), the number of an equation corresponds to the number of the boundary condition in 

formulae (4.1). 
The parameter co, which characterizes a singularity in the wave characteristics at the internal corner 

point of a composite region, can be determined from the condition for a non-trivial solution of system 
(4.2) to exist 

A(0~, ~(m), v(m)) = 0 (4.3) 

It should be noted that the parameter cc is independent of the frequency and the geometrical 
parameters 7, 5 and 11 and is solely determined by the values of the shear moduli and Poisson's ratios 
of the joined regions. This conclusion follows from the form of Eq. (4.3) and is determined by the local 
nature of the singularity: this is also confirmed by the fact that Eq. (4.3) does not change its form 
when g(1) and v (13~ are changed to g(2) and v (2) and back again. This can be proved using elementary 
transformations of the rows and columns of the determinant of system (4.2) 

5. N U M E R I C A L  ANALYSIS  OF T H E  S I N G U L A R I T Y  P A R A M E T E R  

In the numerical analysis of problems of the type being considered, the main attention is given to 
investigating the spectrum of resonance frequencies and the maximum dynamic stresses. However, a 
numerical investigation of Eq. (4.3) with the aim of determining the parameter for the local singularity 
at the internal corner point of the section is also of interest. It shows that, for certain ratios of the constant 
of elasticity of the regions G (m) which join at point D, Eq. (4.3) has a real root c~, 0 < cc < 1. It 
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Table l 

Material of the Material of the region G0) 

regions G (3) and G (2) Brass Tin Platinum Lead Zinc 

Aluminium 
Tungsten 
Magnesium 
Copper 
Nickel 
Silver 
Steel 20 

0.985 
0.965 
0.984 
0.986 
0.993 
0.971 
0.991 

0.971 
0.976 
0.992 
0.981 
0.951 
0.987 
0.942 

0.968 
0.962 
0.979 
0.994 
0.997 
0.975 
0.995 

0.952 
0.901 
0.897 
0.908 
0.878 
0.922 
0.902 

0.994 
0.990 
0.971 
1.106 
1.018 
0.993 
1.009 

characterizes the emergence of local singularities in the stresses at this point. Since, at point D, we have 
the union of three unlike regions at once, it is not possible in this case to introduce compact parameters 
analogous to Dunders coefficients [1], which determine the existence of a discontinuity at a singular 
point of the boundary where two regions join. 

The data from calculations of the roots of Eq. (4.3) for various combinations of elastic properties of 
the materials of the regions G (m) are shown in Table 1. The case when the material of regions G (1) and 
G (2) are the same, which is most frequently encountered in practice, is considered here. 

The question of how the stress singularity parameter depends on the ratio of the stiffnesses of the 
regions being joined is of practical interest. If the elasticity parameters of the regions G (1) and G (2) are 
fixed (v (1) = v (2) = v (3), ~-(1) = g(2), r32 = r31) and taken as being equal to those of steel, and only the 

1 f ner e (3). • . shear modu us 0 the cor r gion G is varied, we arrive at the data in Fig. 2, where the relation 
cz = cz(r32 ) is shown. 

It follows from an analysis of this relation that a local singularity in the stresses at the internal corner 
point appears for any r32. Analysis of the data in Fig. 2 enables one, already at the design state, to make 
an optimal choice of the stiffnesses of the materials of the joined structural components with the aim 
of reducing the stress concentrations at problem points of their sections. 

We will now determine the asymptotic form of the singularity parameter ~z for large values of the 
shear modulus of the corner region g(3). To do this, we will introduce the small dimensionless parameters 
ej = g(j)/g(3) = r~) (j = 1, 2) and, on expanding the solution of Eq. (4.3) in a power series in this parameter 

---- O~o+EIO~l l  + E 2 ~ 1 2 +  . . .  (4.4) 

we can quite easily obtain a sequence of equations for determining 0% %1, %2 . . . . .  For example, the 
first term in the expansion % satisfies the equation 

. 2~0~0 2 
sm--~--o~2)i~=l(oc2-(3-4v(O, sin2~-~-4(i-v(i ' )2)  = O (4.5) 

The first factor in Eq. (4.5) is identical to the left-hand side of a well-known equation [1, 7, 8, 10] 
which determines a singularity in the components of the stress tensor at the vertex of a homogeneous 
wedge with an aperture angle of 90 ° . Its roots are independent of the constants of elasticity of the material 
and, when constructing the asymptotic form of the solution, it is only necessary to take account of the 
real root ~0 = 1 of this equation and the denumerable set of complex roots with a positive real part. 
Numerical analysis shows that the second and third factors only have roots oc 0 e (0, 1) when v 0) > 0.62, 
which does into correspond to the elasticity parameters of real materials. Hence, it can be stated that 
the local singularity parameter tends to unity at large values of CZli, c~i2. We also note that the results 
obtained are only of a qualitative nature since the determination of the following terms of the asymptotic 
form in expansion (4.4) leads to equations containing the sum of four determinants with elements which 
depend on cz0 and RI- Its numerical solution is far more difficult than the solution of Eq. (4.3). 

6. N U M E R I C A L  I N V E S T I G A T I O N  OF THE 
W A V E - F I E L D  C H A R A C T E R I S T I C S  

The system of integral equations is solved using the conventional method [7, 8] by reducing it to an 
infinite system of linear algebraic equations in the Fourier coefficients of the subsidiary functions. The 
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Table 2 

No of 
resonance 

frequencies 

Steel 

~(1) ~(1) 

0.303 0.301 
0.821 0.814 
1.133 1.120 

Steel-Aluminium-Steel 

0.267 0.264 
0.743 0.732 
1.007 0.992 

Steel-Silver-Steel 

~(1) t20) 

0.319 0.320 
0.869 0.863 
1.102 1.092 

Steel-Gold-Steel 

~0) g2(1) 

0.333 0.330 
0.897 0.889 
1.296 1.290 

known asymptotic form of the behaviour of these coefficients in the case of high numbers enables one 
to reduce this system to a finite system. We obtain the frequency equation by equating the determinant 
of the system to zero. The error in satisfying the conditions for the media to be matched served as the 
criterion for the reliability of the calculations. The error in satisfying the matching conditions with respect 
to the displacements did not exceed 2-3% of the maximum magnitude of the displacements over the 
whole frequency band being considered. The accuracy in satisfying the matching conditions with respect 
to the stresses in the neighbourhood of the singular pointA, C and D of the boundary of the composite 
region did not exceed 6-8%. 

In order to ensure the reliability of the results obtained, calculations were also carried out by the 
finite element method using the ANSYS program. The method of rigid body modelling was used in 
setting up the finite-element model (the geometrical boundaries of the model are described and the 
program then generates a mesh with nodes and elements and the dimensions and shape of the elements 
can be monitored). The object is modelled by the six nodal triangular rigid body elements PLANE 2. 
Modal analysis assists in determining the parameters of the oscillations of the composite region: the 
characteristic frequencies and the modes of the vibrations are determined using it. The reliability with 
respect to the finite-element model was monitored by changing the density of the mesh and comparing 
the results obtained. For practically all geometrical dimensions, it was sufficient to specify no more than 
900 nodes. 

The values of the first, second and third characteristic frequencies for a homogeneous section of 
a steel component (11 = 0.5, 8 = 0.4, 7 = 0.2) and various combinations of materials in the regions 
being joined are shown in Table 2 (the material of region G 0) is in the first space, the material of region 
G (z) is in the second space and the material of region G (3) is in the third space) as obtained using the 
proposed method ~2! 1) and found using the finite element method f~!l),. It follows from the data in Table 
2 that the agreement between the results is quite good, but the values of the frequencies ~!1), obtained 
were somewhat lower than ~2! 1) for practically all combinations of materials considered. As might have 
been expected, the errors become larger as the number of the characteristic frequency increases. 

When investigating the spectrum of the resonance frequencies of the oscillations of the composite 
regions, it is of particular interest to determine the frequencies at which the occurrence of intense 
oscillations, localized in the neighbourhood of the interfaces, are characteristic. In the case of the 
matching of two regions, these questions have previously been investigated in [5-7]. 

We will now present an analysis of the mean energy after a period/~ [7, 8] which is accumulated in 
the region G (1-3) = { Ix - 81 < 0.152; 0 _< ~ _< 7z}, that is, in the neighbourhood of the interface DA of 
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regions G 0) and G (3) (Fig. 1). The frequency dependence of the ratio E13 = E(1-3)/E of the energy 
accumulated in the region G (1-3) to the energy accumulated in the whole section is shown in Fig. 3. 
Calculations were carried out for various combinations of the elasticity parameters of the joined regions 
when 11 = 0.7, 5 = 0.8, y = 0.5. 

Curve I corresponds to the case when the material of the regions G (1) and G (2) is steel and the material 
of region G (3) is lead (a steel-steel-lead combination). A rather abrupt jump in the energy is observed 
in the neighbourhood of the frequency ~(1) = 0.897, which is explained by the occurrence of intense 
oscillations, localized in the neighbourhood of the interface of the regions. It is natural to refer to such 
frequencies as boundary resonance frequencies [5]. The magnitude of the maximum of the ratio E(I-3)/E 
depends very much on the elasticity properties of the contacting materials. Thus, in the case of the triplet 
of materials steel-steel-brass, the intensity of the oscillations at the boundary resonance frequency is 
reduced (curve 2, Fig. 3). At the same time, the boundary resonance frequency is shifted somewhat 
compared with the preceding case, which is associated with the change i n the parameters. In the case 
of pairs of materials which correspond to values of the singularity parameter a > 1, practically no jump 
is observed in the magnitude of the coefficient for the singularity in the stresses. Curve 3 in Fig. 3 
corresponds to the frequency dependence of the energy ratio for the triplet of materials, steel- 
steel-zinc. 

It should be noted that, as might have been expected, a change in the elasticity parameters of region 
G(2) has only a small effect on the frequency dependence of the energy accumulated in region G(1-3). 
In the majority of various which have been considered, the maximum energy jump is somewhat reduced 
compared with the case of identical materials in regions G (1) and G (2). Curve 4 in Fig. 3 shows the above- 
mentioned dependence for the triplet of materials steel-aluminium-lead. 

In the numerical analysis of the dynamic components of the stress tensor, it is necessary to take account 
not only of the geometric and elasticity parameters of the contacting regions but also the values of the 
parameters of the local stress singularity at the singular points of the section. It is no less important to 
take account of the acoustic impedances of the contacting media [6] since, when they have different 
ratios, a different degree of reflection of the wave field from the interface is observed. The distribution 
of the normalized stresses (the stresses referred to the maximum stress) (yt~) (0.955, 2), calculated for 
the first (f~(1) = 0.333, curve 1) and second (~0) = 0.897, curve 2) resonance frequencies for a constant 
intensity of the external load, is shown in Fig. 4. The combination of materials is steel-gold-steel and 
the geometric parameters of the section are equal to rl = 0.5, 8 = 0.4, Y = 0.2. 

It follows from the data in Fig. 4 that the maximum shear stresses arise in the neighbourhood of the 
different singular points of the section: for the first characteristic frequency, at pointA and for the second 
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characteristic frequency, at point D. This feature is also preserved in the case of other combinations 
of elastic and geometric parameters of the composite region. 

7. C O N C L U S I O N S  

The determination of the real roots of Eq. (4.3) enables one to predict the nature of the dynamic 
concentration of stresses in the unsafe zones of a section of prismatic composite solids. By selecting 
the elasticity characteristics of the joined regions, which correspond to the maximum values of the local 
singularity parameter a, it is possible to minimize the dynamic stresses at the singular points of the 
boundary of a section, which correspond to the internal corner points of the joint of unlike materials. 
The results obtained can be used when designing welded, soldered and glued corner joints operating 
in a vibration field. 
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